
MSRI Summer School on Mathematics of Machine Learning

Problem Set #3 Wednesday, July 31, 2019

Problem 3-1

a. Let H be a space of functions h : X → {−1,+1}. As in class, let co(H) be the convex
hull of H. For any sample S, show that R̂S(co(H)) = R̂S(H).

b. Suppose the labels y belong to some space Y (while the instances x are in X, as
usual). Let F be a predictor space of functions f : X → Y . Let L : Y × Y → [0, 1] be
a loss function so that if an example x has predicted label f(x) and true label y then
the resulting loss is L(f(x), y). For each f , we define the function `f : X × Y → [0, 1]
by `f (x, y) = L(f(x), y), and let L = {`f : f ∈ F}.
Often, we are interested in bounding the true risk, E [`f ] (that is, the expected loss

on the true distribution), uniformly in terms of the empirical risk, Ê [`f ] (that is, the
average loss on a random training set). As we have seen, the difference between these
can be bounded uniformly for all f ∈ F in terms of the Rademacher complexity of
L. However, it is often more natural and convenient to state bounds in terms of the
Rademacher complexity of F .

(i) Suppose, as in the usual classification setting, that Y = {−1,+1} and L(ŷ, y) =
1{ŷ 6= y}. For any sample S, show that R̂S(L) = 1

2R̂S(F). (Here and in the
next part, S is a sequence of pairs (x1, y1), . . . , (xm, ym) from X × Y ; however,
in computing R̂S(F), only the xi’s are relevant.)

(ii) Suppose, as in a typical regression setting, that Y = [0, 1] and L(ŷ, y) = (ŷ−y)2.
For any sample S, show that R̂S(L) ≤ 2R̂S(F).
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Figure 1: A plot of Υ(γ), as a function of γ. Also plotted are the linear lower and upper
bounds, γ and 2γ.

Problem 3-2

a. For i = 1, . . . , n, let Gi be a space of concepts ({0, 1}-valued functions) defined on
some domain X, and let F be a space of concepts defined on {0, 1}n. (That is, each
gi ∈ Gi maps X to {0, 1}, and each f ∈ F maps {0, 1}n to {0, 1}.) Let C be the space
of all concepts c : X → {0, 1} of the form

c(x) = f(g1(x), . . . , gn(x))

for some f ∈ F , g1 ∈ G1, . . . , gn ∈ Gn.

Give a careful argument proving that

ΠC(m) ≤ ΠF (m) ·
n∏
i=1

ΠGi(m).

b. AdaBoost outputs a combined hypothesis H of the form

H(x) = sign

(
T∑
t=1

αtht(x)

)

where α1, . . . , αT ∈ R and h1, . . . , hT are in some class H, which we assume has VC-
dimension d ≥ 1 (and where we here regard T as fixed). Let S be the space of all
functions H of this form. Use part (a) to first derive a bound on ΠS(m), and to then
prove that, with probability at least 1− δ, for every function H ∈ S,

err(H) ≤ êrr(H) + Õ

(√
Td+ ln(1/δ)

m

)
,

assuming m ≥ max{d, T}. (Here, the “soft-Oh” notation Õ (·) means that we are
ignoring log terms in the bound, in the same way that big-Oh notation ignores con-
stants.)

Hint for part (a): To get started, fix g1, . . . , gn, and count how many behaviors can be
realized on any set of m points by functions c of the form given in the problem (with f
varying, but g1, . . . , gn fixed).
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Problem 3-3

This problem gives a technique for relating edges and margins, specifically showing that,
when the weak learning assumption holds, all examples will eventually have “large” margins
(at least some positive value).

Suppose AdaBoost is run for an unterminating number of rounds. In addition to our
usual notation, we define for each T ≥ 1:

FT (x) =
T∑
t=1

αtht(x) and sT =
T∑
t=1

αt.

Recall that each αt ≥ 0 (since εt ≤ 1
2). The minimum margin on round t, denoted θt, is the

smallest margin of any training example; thus,

θt = min
i

yiFt(xi)

st
.

Finally, we define the smooth margin on round t to be

gt =
− ln

(
1
m

∑m
i=1 e

−yiFt(xi)
)

st
.

a. Prove that

θt ≤ gt ≤ θt +
lnm

st
.

Thus, if st gets large, then gt gets very close to θt.

b. For 0 ≤ γ ≤ 1
2 , let us define the continuous function

Υ(γ) =
− ln(1− 4γ2)

ln
(
1+2γ
1−2γ

) ,

(where, by continuity, Υ(0) = 0 and Υ(12) = 1). A plot of this function is shown in
Figure 1. It is a fact (which you do not need to prove) that γ ≤ Υ(γ) ≤ 2γ, and also
that Υ(γ) is (strictly) increasing.

Prove that gT is a weighted average of the values Υ(γt), specifically,

gT =

∑T
t=1 αtΥ(γt)

sT
.

c. Suppose that, for some γ > 0, and for all t, γt ≥ γ. Prove that, for all t,

θt ≥ Υ(γ)− C

t

where C > 0 is a number that may depend on m and γ, but should not depend on
t. Give an explicit expression for C. This shows that the minimum margin θt (and
therefore the margins of all the training examples) must in the limit be at least Υ(γ).
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