
MSRI Summer School on Mathematics of Machine Learning

Problem Set #2 Tuesday, July 30, 2019

Problem 2-1

Let the domain be X = R, and let C = Cs be the class of concepts defined by unions of s
intervals. That is, each concept c is defined by real numbers a1 ≤ b1 ≤ · · · ≤ as ≤ bs where
c(x) = 1 if and only if x ∈ [a1, b1] ∪ · · · ∪ [as, bs].

a. Compute the VC-dimension of Cs exactly.

b. Describe an efficient algorithm that learns the class Cs for every s, assuming that s
is known ahead of time to the learner. You should describe a single algorithm that
works for all Cs, provided that s is known so that the learner can choose the number
of examples needed as a function of ε, δ and s. Prove that your algorithm is PAC (i.e.,
produces a hypothesis with error at most ε with probability at least 1− δ), and argue
that both the running time and the required number of examples are polynomial in
1/ε, 1/δ and s.

Problem 2-2

For this problem, you need not be concerned about computational efficiency. Throughout
this problem, as usual, C and H are classes of concepts defined on the domain X.

a. Prove or disprove the following statement: For every finite domain X, and for all
classes C and H, if C is PAC learnable by H, then C ⊆ H. (To prove the statement,
you of course need to give a proof showing that it is always true. To disprove the
statement, you can simply provide a counterexample showing that it is not true in
general.)

b. Repeat part (a) without the assumption that X is finite. In other words, prove or
disprove that: For every (not necessarily finite) domain X, and for all classes C and
H, if C is PAC learnable by H, then C ⊆ H.



Problem 2-3

Let D be a distribution over X × {0, 1}, and let S = 〈(x1, y1), . . . , (xm, ym)〉 be a random
sample from D. Let

err(h) = Pr(x,y)∼D [h(x) 6= y]

êrr(h) =
1

m

m∑
i=1

1{h(xi) 6= yi}.

For simplicity, we will assume that H is finite, although the results of this problem can be
carried over to the infinite case. Note that none of the results depend on |H|.

Let ĥ and h∗ be the hypotheses in H with minimum training error and generalization
error, respectively:

ĥ = arg min
h∈H

êrr(h)

h∗ = arg min
h∈H

err(h).

Be sure to keep in mind that, unlike h∗, ĥ is a random variable that depends on the random
sample S.

a. Prove that
E
[
êrr(ĥ)

]
≤ err(h∗) ≤ E

[
err(ĥ)

]
.

b. Prove that, with probability at least 1− δ,

∣∣∣êrr(ĥ)− E
[
êrr(ĥ)

]∣∣∣ ≤ O(√ ln(1/δ)

m

)
.

Give explicit constants, and be sure to end up with a bound that is independent of
|H|.

c. Explain in words the meaning of what you proved in both of the preceding parts, and
how we would expect training error to compare to test error when using a machine
learning algorithm on actual data.
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