Problem Set #2

Problem 2-1

Let the domain be $X = \mathbb{R}$, and let $\mathcal{C} = \mathcal{C}_s$ be the class of concepts defined by unions of s intervals. That is, each concept c is defined by real numbers $a_1 \leq b_1 \leq \cdots \leq a_s \leq b_s$ where c(x) = 1 if and only if $x \in [a_1, b_1] \cup \cdots \cup [a_s, b_s]$.

- a. Compute the VC-dimension of C_s exactly.
- b. Describe an efficient algorithm that learns the class C_s for every s, assuming that s is known ahead of time to the learner. You should describe a single algorithm that works for all C_s , provided that s is known so that the learner can choose the number of examples needed as a function of ϵ , δ and s. Prove that your algorithm is PAC (i.e., produces a hypothesis with error at most ϵ with probability at least 1δ), and argue that both the running time and the required number of examples are polynomial in $1/\epsilon$, $1/\delta$ and s.

Problem 2-2

For this problem, you need not be concerned about computational efficiency. Throughout this problem, as usual, C and H are classes of concepts defined on the domain X.

- a. Prove or disprove the following statement: For every *finite* domain X, and for all classes C and H, if C is PAC learnable by H, then $C \subseteq H$. (To prove the statement, you of course need to give a proof showing that it is always true. To disprove the statement, you can simply provide a counterexample showing that it is not true in general.)
- b. Repeat part (a) without the assumption that X is finite. In other words, prove or disprove that: For every (not necessarily finite) domain X, and for all classes \mathcal{C} and \mathcal{H} , if \mathcal{C} is PAC learnable by \mathcal{H} , then $\mathcal{C} \subseteq \mathcal{H}$.

Problem 2-3

Let D be a distribution over $X \times \{0,1\}$, and let $S = \langle (x_1, y_1), \dots, (x_m, y_m) \rangle$ be a random sample from D. Let

$$\operatorname{err}(h) = \operatorname{Pr}_{(x,y)\sim D} [h(x) \neq y]$$
$$\widehat{\operatorname{err}}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}\{h(x_i) \neq y_i\}.$$

For simplicity, we will assume that \mathcal{H} is finite, although the results of this problem can be carried over to the infinite case. Note that none of the results depend on $|\mathcal{H}|$.

Let h and h^* be the hypotheses in \mathcal{H} with minimum training error and generalization error, respectively:

$$\begin{aligned} \hat{h} &= \arg\min_{h\in\mathcal{H}}\widehat{\mathrm{err}}(h) \\ h^* &= \arg\min_{h\in\mathcal{H}}\mathrm{err}(h). \end{aligned}$$

Be sure to keep in mind that, unlike h^* , \hat{h} is a random variable that depends on the random sample S.

a. Prove that

$$\mathbf{E}\left[\widehat{\operatorname{err}}(\hat{h})\right] \leq \operatorname{err}(h^*) \leq \mathbf{E}\left[\operatorname{err}(\hat{h})\right].$$

b. Prove that, with probability at least $1 - \delta$,

$$\left|\widehat{\operatorname{err}}(\hat{h}) - \operatorname{E}\left[\widehat{\operatorname{err}}(\hat{h})\right]\right| \le O\left(\sqrt{\frac{\ln(1/\delta)}{m}}\right)$$

Give explicit constants, and be sure to end up with a bound that is independent of $|\mathcal{H}|$.

c. Explain in words the meaning of what you proved in both of the preceding parts, and how we would expect training error to compare to test error when using a machine learning algorithm on actual data.