
MSRI Summer School on Mathematics of Machine Learning

Problem Set #1 Monday, July 29, 2019

Problem 1-1

Let the domain X = {0, 1}n so that each example x is a vector (x1, . . . , xn) of n boolean
variables xj (where, as usual, 1 is identified with true, and 0 with false). A monotone
monomial is the conjunction (logical and) of a subset of these variables; it is monotone
because the variables appearing in the monomial cannot be negated. For instance,

c(x) = x2 ∧ x7 ∧ x11

is a concept (boolean function) defined by such a formula; it is equal to 1 if and only if x2,
x7 and x11 are all equal to 1.

a. Let C be the concept class consisting of all monotone monomials (on n variables).
Describe an efficient PAC-learning algorithm for C. Specifically, be sure to show that
your algorithm, with probability at least 1− δ, will output an ε-good hypothesis (that
is, with generalization error at most ε). Derive an exact bound on the number of
examples m required to achieve this, and show that m is polynomial in n, 1/ε and
1/δ. Finally, argue that your algorithm runs in time polynomial in n and m.

b. Use part (a) to derive a PAC learning algorithm for the class of all k-CNF (conjunctive
normal form) formulas, that is, formulas which are the conjunction of any number of
clauses, where each clause is the disjunction (logical or) of at most k literals (variables
that are either negated or unnegated). Here, k is a small constant, like 2 or 3. For
instance,

(x5 ∨ x6) ∧ (x17) ∧ (x2 ∨ x6) ∧ (x9 ∨ x1)

is an example of a 2-CNF formula, where xj denotes the logical negation of xj .



Problem 1-2

In class we proved a general result for analyzing learning algorithms that use a finite hy-
pothesis space H by showing that, with high probability, for every hypothesis h ∈ H, if h
is consistent with the training set, then h is ε-good. However, when working with a par-
ticular learning algorithm A, we really only care about the one hypothesis returned by the
algorithm, which we here denote hA. Since we only care about that one hypothesis, and
none of the others, it seems that we should be able to get a better bound on the number of
examples needed for learning by only focusing on hA.

Indeed the following argument shows that this is possible. In particular, the argument
shows that, with probability at least 1− δ, if hA is consistent, then hA is ε-good; that is,

Pr [(hA is consistent)⇒ (hA ε-good)] ≥ 1− δ,

or equivalently,
Pr [(hA is consistent) ∧ (hA ε-bad)] ≤ δ.

Thus, an algorithm that always finds a consistent hypothesis hA is also guaranteed to be
PAC. Note, however, that compared to what was given in lecture, the argument below yields
a far better bound on the number of examples sufficient for learning, namely, ln(1/δ)/ε, a
bound that is entirely independent of H.

As usual, the sample consists of random training examples x1, . . . , xm labeled according
to the target concept c. The algorithm A takes these examples as input and outputs the
hypothesis hA (for simplicity, we assume A is deterministic). All of the probabilities below
are with respect to the random choice of training examples. Here is the argument:

Pr [(hA is consistent) ∧ (hA ε-bad)]
= Pr [hA is consistent | hA ε-bad] · Pr [hA ε-bad] definition of conditional probability
≤ Pr [hA is consistent | hA ε-bad] since Pr [hA ε-bad] ≤ 1
= Pr [hA(x1) = c(x1) ∧ · · · ∧ hA(xm) = c(xm) | hA ε-bad]

meaning of consistency
=

∏m
i=1 Pr [hA(xi) = c(xi) | hA ε-bad] by independence of the xi’s

≤
∏m
i=1(1− ε) an ε-bad hypothesis is correct

with probability ≤ 1− ε
= (1− ε)m
≤ e−εm since 1 + x ≤ ex for all x
≤ δ

where the last inequality holds if

m ≥ ln(1/δ)

ε
.

This result, which shows that the number of examples need not depend on the complexity
or size of the hypothesis space, should seem too good to be true. And indeed it is! The
claimed result is actually false, which means that the argument above must be wrong.

a. What are the mistakes or false steps in the argument above? (There are at least two.)
To answer this, be sure you understand which are the random variables, and what
they each depend on.

b. In general, to avoid this kind of fallacious argument, it is important to specify the
hypotheses we are working with before any data has been randomly generated. How
does the false argument above fall into that trap? And how did the proof given in
class avoid that?

2



Problem 1-3

This problem explores a general method for bounding the error when the hypothesis space
is infinite, a different approach from the ones being given in lecture.

Some algorithms output hypotheses that can be represented by a small number of ex-
amples from the training set. For instance, suppose the domain is R and we are learning a
(positive) half-line of the form x ≥ a where a is a threshold defining the half-line. A simple
algorithm chooses the leftmost positive training example and outputs the half-line defined
by using this point as a threshold, which is clearly consistent with the training data. Thus,
in this case, the hypothesis can be represented by just one of the training examples.

More formally, let F be a function mapping labeled examples to concepts, and assume
that algorithm A, when given training examples (x1, c(x1)), . . . , (xm, c(xm)) labeled by some
unknown c ∈ C, chooses k indices i1, . . . , ik ∈ {1, . . . ,m} and outputs a hypothesis h =
F ((xi1 , c(xi1)), . . . , (xik , c(xik))) which is consistent with all m training examples. In a
sense, the algorithm has “compressed” the sample down to a sequence of just k of the m
training examples. (We assume throughout that m > k.) For instance, in the example of
half-lines: k = 1; i1 is the index of the leftmost positive training example; and the function F
returns a half-line hypothesis with threshold xi1 , that is, the hypothesis h = F ((xi1 , c(xi1)))
which classifies x positive if and only if x ≥ xi1 .

a. Give such an algorithm for axis-aligned hyper-rectangles in Rn with k = O(n). (An
axis-aligned hyper-rectangle is a set of the form [a1, b1]× · · · × [an, bn], and the corre-
sponding concept is the binary function that is 1 for points inside the rectangle and
0 otherwise.) Your algorithm should run in time polynomial in m and n.

b. Returning to the general case, assume as usual that the examples are chosen at random
from some distribution D. Also assume that the size k is fixed. Argue carefully that,
with probability at least 1 − δ, if the output hypothesis h is consistent with all m
random training examples, then its error will be

errD(h) ≤ O
(

ln(1/δ) + k lnm

m− k

)
.

Side note: A difficult, long-standing open problem asks if it is always possible to find such
a “compression scheme” whose size k is equal to (or proportional to) the VC-dimension d
of the target class C.

Hint for part (b): Fix i1, . . . , ik as in the statement of the problem, and bound the
probability of the hypothesis defined by exactly these k examples being consistent (with all
m training examples) but having generalization error greater than ε. Then apply the union
bound.

3


