
Mathematics of Machine Learning: Bandits Summer 2019

Problem Set
Lecturer: Kevin Jamieson TA: Lalit Jain

Disclaimer: These exercises have not been subjected to the usual scrutiny reserved for formal publications.
They may contain mistakes.

The Upper Confidence Bound Algorithm.
Consider the following algorithm for the multi-armed bandit problem.

Algorithm 1: UCB

Input: Time horizon T , 1-subGaussian arm distributions P1, · · · , Pn
with unknown means µ1, · · · , µn
Initialize: Pull each arm once. At any time let Ti(t) denote the
number of times i has been pulled at time t and let Ti = Ti(T ).
for: t = 1, · · · , T

Choose It = maxi=1,··· ,k µ̂i,t +
√

2 log(nT 2)
Ti(t)

Observe XIt,t ∼ PIt . TIt(t+ 1)← TIt(t) + 1, update µ̂i,t+1

In the following exercises, we will compute the regret of the UCB algorithm and show it matches the regret
bound from lecture. Without loss of generality, assume that the best arm is µ1. For any i ∈ [k], define the
sub-optimality gap ∆i = µ1 − µi.
1. (Warm-up). Show that RT =

∑n
i=1 ∆iE[Ti].

2. Consider the event

E =
⋂
i∈[n]

⋂
t≤T

{
|µ̂i,t − µi| ≤

√
2 log(2nT 2)

t

}
.

Show that P(Ei) ≥ 1− 1
T .

3. Conditioned on event E , show that Ti <
8α log(nT 2)

∆2
i

.

4. Show that E[Ti] ≤ 8 log(nT 2)
∆2

i
+ 1. When n ≤ T , conclude by showing that RT ≤

∑k
i=1

(
8α log(T )

∆i
+ 2∆i

)
.

5. Implement UCB, Action Elimination, and your personal algorithm for two arms, µ1 = ∆ and µ2 = 0 and
run it for a time horizon of around 2000 samples. What do you notice? What if you have three arms?

6. (Challenge Problem.) The above algorithm relies on knowing the horizon T . Can you remove this
dependency providing an algorithm with a similar anytime regret guarantee?
Remark: The log(T ) term can in fact be removed. See [1, 2] for more details.

Explore-then-Commit.
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Algorithm 1: Explore-then-Commit

Input: Time horizon T , α > 2, 1-subGaussian arm distributions
P1, · · · , Pn with unknown means µ1, · · · , µn
for: t = 1, · · · , T

If t ≤ mn, choose It = (t mod n) + 1
Else, It = arg maxi µ̂i,mn

1. (Warm-up). Show that E[Ti] ≤ mn + (T −mn)P(µ̂i,mn ≥ maxj 6=i µ̂i,mn), where µ̂i,mn is the empirical
mean of arm i at time mn.

2. Show that the regret of Explore-then-Commit is bounded by

RT ≤ m
n∑
i=1

∆i + (n−mn)

n∑
i=1

exp(−m∆2
i /4).

3. Assume you have only two arms. Minimize the above expression for m. How much regret would you incur
if you know the gap, ∆2 = µ1 − µ2?

4. Implement Explore then commit and UCB in the case of two arms (assume that µ1 = 0 and µ2 = ∆.
Experiment with different values of m for T ≈ 1000. What do you observe? How does ETC at the optimal
value of m compare to UCB?

5. (Challenge) The choice of m in part 3 depended on knowing the smallest gap. Show that there is a choice
of the smallest m independent of the gap so that the regret is O(T 2/3).

Lower Bounds on Hypothesis Testing

Consider n samples X1, · · · , Xn ∼ P where P ∈ {P0, P1}. A hypothesis test for H0 : P = P0, H1 : P = P1

is a function φ(x1, · · · , xn) : Rn → {0, 1} that takes the data as input and returns the null or the alternative.
Assume that the dPi = pi(x)dx In this problem, we will lower bound the number of samples needed by any
hypothesis test on a fixed number of samples.

1. Show infφ max{P0(φ = 1),P1(φ = 0)} ≥ 1
2

∫
Rn min(p0(x), p1(x))dx. (Hint: bound the max below by the

average, explicitly compute the optimal φ, and show the result).

2. Let’s continue on. Show 1
2

∫
x∈R min(p0(x), p1(x))dx ≥ 1

4

(∫
x∈R

√
p0(x)p1(x)dx

)2

3. One more step. Show
(∫

x∈R

√
p0(x)p1(x)dx

)2

≥ 2 exp
(
−
∫
x∈R log

(
p1(x)
p0(x)

)
p1(x)dx

)
4. The final quantity is known as the KL-Divergence between distributions. Now assume that P0 =
N(µ0In, In) and P1 = N(µ1In, In) where In is the n× n identity matrix. Show (or look up) KL(P0||P1).

5. Conclude that to acheive a test with a probability of error less than δ, then we necessarily have
n ≥ 2∆−2 log(1/4δ).
Remark: The art of lower bounds is well established and extensive in statistics. See [?] for more details in
the hypothesis testing setting. In the bandit setting, see [3].
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Some details from lecture.
1. (Markov’s Inequality) Let X be a positive random variable. Prove that P(X > λ) ≤ E[X]

λ .

2. (Hoeffding’s Lemma) Let X ∈ [a, b]. Show that for any λ ≥ 0, E[eλX ] ≤ λ2(b−a)2

8 .

The Kiefer-Wolfowitz Theorem Let x1, · · · , xn ⊂ Rn. In this exercise, we will prove the celebrated
Kiefer-Wolfowitz theorem. Let A(λ) =

∑
x λxxx

> and ρ = minλ∈∆n
maxi∈[n] ‖xi‖2A(λ)−1 .

1. Show minλ∈∆n
maxi∈[n] ‖xi‖A(λ)−1 = minλ∈∆n

maxρ∈∆n
‖xi‖A(λ)−1 .

2. Next, show that for any λ ∈ ∆n,
∑
x λx‖x‖2A(λ)−1 ≥ d.

3. Now, consider the function f(λ) = log det(A(λ)). Show that ∇λf(λ) = ‖x‖2A(λ)−1 . (Hint: use a Frechet

derivative. Even if you black-box this part, convince yourself it is true).

4. Show that f(λ) is concave in λ .

5. Let λ∗ = arg maxλ∈∆n
f(λ). Apply the first order optimality conditions to show that 0 ≥ 〈∇f(λ∗), λ−λ∗〉

for any λ ∈ ∆n.

6. Use the result of the previous exercise along with to show part 2 to conclude. You actually got a bonus
result. What is it?

Thompson Sampling
We consider the following setting. Assume that we have access to n arm distributions ν1(θ), · · · , νn(θ)

each supported on [0, 1], where θ ∈ R is a real parameter, and the mean of the i-th distribution is µi(θ). We
also assume access to a prior p0(θ).

Algorithm 1: Thompson Sampling

Input: Time horizon T , arm distributions ν1, · · · , νn
Let pt(|̇I1, R1, · · · , It−1, Rt−1) be the posterior distribution on θ at
time t. for: t = 1, · · · , T

Sample θt ∼ pt
Choose It = arg maxi≤n µt(θt)

Denote the σ-algebra generated by the observations at time t by Ft = σ(I1, R1, · · · , It−1, Rt−1) (if you are
unfamiliar with σ-algebras, don’t worry too much - conditioning on the σ-algebra just means conditioning
on the choices of arms and the rewards observed). The Bayesian Regret of an algorithm is

BRT = Eθ∼p0

[
T∑
t=1

µ∗ − µIt(θ)

]

where i∗ = arg maxi∈[n] µi(θ) (it’s a random variable depending on θ).
1. Let the good event be

E =
⋂
i∈[n]

⋂
t≤T

{
|µ̂i,t − µi| ≤

√
2 log(2/δ)

t

}
.

Show that P(E) ≤ nTδ.
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2. (Key idea.) Show that P(i∗|Ft−1) = P(It|Ft−1).

3. Define Ut(It) =
√

2 log(2/δ)
Ti(t)

. Using the above, show that E[µi∗ − µIt |Ft−1] = E[µi∗ − Ut(i∗)|Ft−1] +

E[Ut(It)− µIt |Ft−1].

4. Conclude that BRT = E[
∑T
t=1 µi∗ − µIt +

∑T
t=1 µIt − µi∗ ] Hint: Tower rule of expectation.

5. On the event E , show that 1(E)BRT ≤
∑
Ut(It)− µIt ≤ O(

√
Tk log(1/δ)).

6. Make an appropriate choice of δ and state a final regret bound.

In general, giving frequentist bounds on the regret is significantly more difficult. We refer the interested
reader to [4] and the tutorial [5] for more details.

The Doubling Trick
Assume we have access to a fixed-horizon algorithm A that depends on knowing the time horizon T and

the regret A incurs is given by f(T ). In this algorithm we develop a strategy to turn A into an anytime
algorithm.
1. Now assume that f(T ) ≤

√
T . Come up with a strategy so that at anytime t, the cumulative regret is

bounded C
√
t for some fixed constant C.

2. Now assume that f(T ) ≤ log T . Come up with a strategy so that at anytime t, the cumulative regret is
bounded C log t for some fixed constant C.

Notes: The presentation of Explore-then-Commit and Thompson sampling are motivated by those in [6].
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