
1. Let f : Rd → R. Assume that for any x there exists gx ∈ Rd such that for all y one has
f(x) − f(y) ≤ gx · (x − y). Show that f is convex. Furthermore if f is differentiable,
show that one can take gx = ∇f(x).

2. Prove that X 7→ − log det(X) is convex on the set of positive definite matrices. Hint:
to exhibit a subgradient at x = X, consider some other point y = X + Y and write it
as X1/2(I +X−1/2Y X−1/2)X1/2 (recall also the AM-GM inequality).

3. For a convex set K ⊂ Rd we define the normal cone of K at x ∈ K by NK(x) = {θ ∈
Rd : ∀y ∈ K, θ · (y− x) ≤ 0}. What are the normal cones of the Euclidean ball? Draw
a picture for a 2-dimensional polytope.

4. Show that for a convex function one has x = argminx′∈K f(x′) ⇔ ∇f(x) + λ = 0 for
some λ ∈ NK(x).

5. Let x ∈ Rd and y be its Euclidean projection on K. Show that for any z in K, one
has ‖y − z‖ ≤ ‖x− z‖.

6. Consider a polytope written as K = {x : aj · x ≤ bj∀j ∈ [m]}. Show that NK(x) ={∑
j:aj ·x=bj λjaj, λj ≥ 0

}
.

7. Show that the algorithm xt+1 = argminx∈span(∇f(x0),...,∇f(xt)) f(x) always terminate in
at most d steps.

8. Consider a quadratic function f(x) = 1
2
x>Ax + b>x. Derive a simple formula for the

update of the above algorithm (Hint: you may want to work with the inner product
〈x, y〉A = x>Ay, and first note that the updates xt+1− xt form an orthogonal basis for
that inner product).

9. Prove that for a smooth function f , with a noisy oracle such that E[‖g−∇f(x)‖2] ≤ σ2

one has that the rate of gradient descent is of order β
t

+ σ√
t
.

10. How can the above result be used in a machine learning setting? Think about doing
mini-batches (to leverage parallel processing).
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