10.

. Let f:R? — R. Assume that for any x there exists g, € R such that for all y one has

f(x) = f(y) < gp - (x —y). Show that f is convex. Furthermore if f is differentiable,
show that one can take g, = Vf(x).

. Prove that X — —logdet(X) is convex on the set of positive definite matrices. Hint:

to exhibit a subgradient at x = X, consider some other point y = X + Y and write it
as XYV2(I + X~12y X—1/2) X1/2 (vecall also the AM-GM inequality).

. For a convex set K C R? we define the normal cone of K at v € K by Ng(x) = {0 €

R?:Vy € K,0-(y—x) <0}. What are the normal cones of the Euclidean ball? Draw
a picture for a 2-dimensional polytope.

Show that for a convex function one has x = argmin, ., f(2') & Vf(zx) + A = 0 for
some A € Ng(z).

Let € R? and y be its Euclidean projection on K. Show that for any z in K, one
has [y — z]| < [lz — 2|.

Consider a polytope written as K = {z : a; - x < b;¥j € [m]}. Show that Ng(z) =
{Zj:aj-x:bj )\jaj7 )\j Z O}

. Show that the algorithm x;,1 = argming e un(v f(z0),.. v 1)) f(¥) always terminate in

at most d steps.

Consider a quadratic function f(z) = 2" Az + b'z. Derive a simple formula for the
update of the above algorithm (Hint: you may want to work with the inner product
(r,9)a4 = 2" Ay, and first note that the updates x,,; — 2; form an orthogonal basis for
that inner product).

Prove that for a smooth function f, with a noisy oracle such that E[||g—V f(z)]|?] < o2
one has that the rate of gradient descent is of order % + %

How can the above result be used in a machine learning setting? Think about doing
mini-batches (to leverage parallel processing).



