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1 Effect of Modeling Errors in Policy Evaluation [20 pts]

Consider deploying a Reinforcement Learning (RL) agent on an episodic MDP M with a horizon
of H timesteps. The true MDP M is never revealed to the agent except for the state and action
space (S and A, respectively) and the time horizon H. In other words, the agent knows neither the
expected reward r(s, a) nor the transition dynamics P (s′ | s, a) for a generic state-action pair (s, a).

As the agent explores the environment in different episodes it builds an empirical model of the
world (often via maximum likelihood) which we denote by M̂ . After collecting sufficient data we
would expect the empirical MDP to be similar to the true MDP.

Since our MDP is episodic, the value of a state depends on the time to termination of the episode.
Thus, for a given stochastic policy π, we require a different value function for each timestep, which
we denote V1, . . . , VH in M and V̂1, . . . , V̂H in M̂ . In particular, for i = 1, . . . ,H, let

Vi(s) = E

[
H∑
t=i

r(st, at)
∣∣∣ si = s

]
and V̂i(s) = E

[
H∑
t=i

r̂(st, at)
∣∣∣ si = s

]
,

where the expectation is taken under following policy π. Suppose we use the empirical MDP M̂
instead of M to evaluate policy π. Assuming V̂H+1 = VH+1 = ~0 show that for all i = 1, . . . ,H:

V̂i(s)− Vi(s) =
H∑
t=i

E

[
r̂(st, at)− r(st, at) +

∑
s′

(P̂ (s′ | st, at)− P (s′ | st, at))V̂t+1(s
′)
∣∣∣ si = s

]
.

In the above equality the expectation is defined with respect to the states encountered in true MDP
M upon starting from si and following stochastic policy π.

This result relates the value of policy π on M̂ and M using the expected trajectories on M which
we can compute easily. If it holds that r̂ and P̂ are close to r and P then this result can be used to
conclude that the empirical value function V̂ is also close to the true one V .
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2 Expected Regret Bounds (35pts)

Assume a reinforcement learning algorithm A for discounted infinite-horizon MDPs has expected
regret

E∗

[
T∑
t=1

rt

]
− EA

[
T∑
t=1

rt

]
= f(T )

for all T > 0, where E∗ is over the probability distribution with respect to the optimal policy π∗ and
EA is the expectation with respect to the algorithm’s behavior. We assume that γ ∈ [0, 1) is the
discount factor and that rewards are normalized, i.e., rt ∈ [0, 1].

(a) Let π be an arbitrary policy or algorithm. Show that for any ε′ > 0 and T ′ ≥ log 1
γ

H
ε′ where

H = 1/(1− γ), we have∣∣∣∣∣Vπ(s)−
T ′∑
t=1

γt−1Eπ[rt|s1 = s]

∣∣∣∣∣ ≤ ε′ , for all state s.
Note Vπ is the value function associated with π and Eπ is the expectation with respect to the
randomization of π.

(b) From the regret guarantee of algorithm A and Part a), it follows that for any ε′ > 0 and
T ′ ≥ log 1

γ

H
ε′ , we have

E∗[V∗(sT+1)]− EA[VA(sT+1)] ≤ f(T ′ + T )− f(T ) + 2ε′ , for T > 0,

where VA is the value function of the (possibly nonstationary) policy that algorithm A follows.

Assume now f(T ) =
√
T . Show that for any ε > 0 and t ≥ 1 + 1

ε2

(
log 1

γ

4H
ε

)2
, we have

E∗[V∗(st)]− EA[VA(st)] ≤ ε .

Hint: It may be helpful to set ε′ to be some function of ε and choose an appropriate value of
T ′.
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