
MSRI Summer School Precept 3: Lazy training in deep learning

Instructor: J. Bruna

TA: S. Jelassi

In non-convex optimization, changes in the parametrization of a model, optimization algo-

rithm or initialization can lead to a variety of models with very different properties. We

have studied one implicit bias phenomenon during the last problem session in the case of

gradient descent applied to underdetermined logistic regression. Today, we focus on a more

general implicit bias that is called lazy training (Chizat and Bach, 2018). It corresponds to

the case where the model behaves likes its linearization around the initialization.

Setting.

We want to minimize with gradient-based methods, the objective function F : Rp → R+

defined as

F (w) := R(h(w)),

where Rp is the parameter space, F is a Hilbert space, h : Rp → F is a smooth model and

R : F → R+ is a smooth loss. With an initialization w0 ∈ Rp, the linearized model around w0,

h̄ is defined as h̄(w0) = h(w0)+Dh(w0)(w−w0) and the corresponding objective F̄ : Rp → R+

as

F̄ (w) := R(h̄(w)).

Assumption. h is differentiable with a locally Lipschitz differential Dh i.e. ‖Dh(w) −
Dh(w′)‖ ≤ LDh‖w − w′‖ and R is differentiable with a Lipschitz gradient i.e. ‖∇R(z) −
∇R(z′)‖ ≤ LR‖z − z′‖.

Problem 1: When does lazy training occur?

Let’s assume that we initialize the gradient-based method in a point w0 ∈ Rp that is not a

minimizer i.e. F (w0) > 0 and not a critical point i.e. ∇F (w0) 6= 0. We consider a gradient

descent step w1 := w0 − η∇F (w0) with a small stepsize η > 0.

1) Give an approximation to the relative change of the objective ∆(F ) := |F (w1)−F (w0)|
F (w0)

in

terms of ∇F (w0), F (w0) and η.

2) Give an approximation to the relative change of the differential of h, ∆(Dh) := ‖Dh(w1)−Dh(w0)‖
‖Dh(w0)‖

in terms of ∇F (w0), D
2h(w0), Dh(w0) and η.
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3) Lazy training refers to the case where the differential of h does not sensibly change while

the loss drastically decreases. By using the previous questions, show that this corresponds

to
‖∇F (w0)‖
F (w0)

� ‖D
2h(w0)‖

‖Dh(w0)‖
. (1)

4) For the square loss R(y) := 1
2
‖y− y∗‖2 for some y∗ ∈ F this leads to the simpler criterion

κh(w0) := ‖h(w0)− y∗‖ ·
‖D2h(w0)‖
‖Dh(w0)‖2

� 1. (2)

By considering a scaling factor α > 0, derive an expression for καh(w0). How should we

choose α to favor lazy training?

Application to q-layers neural networks with homogeneous activations. Assume

that h(W1, . . . ,Wq) = Wqσ(Wq−1σ(Wq−2 . . . σ(W1z))), where W1, . . . ,Wq are the weight ma-

trices and σ is a homogeneous activation function i.e. σ(λz) = λσ(z), for λ > 0.

5) For λ > 0 andW
(1)
0 , . . . ,W

(q)
0 ∈ Rp, express h(λW

(1)
0 , . . . , λW

(q)
0 ) as in terms of h(W

(1)
0 , . . . ,W

(q)
0 ).

6) Deduce an expression for κh(λW
(1)
0 , . . . , λW

(q)
0 ). When does the lazy regime appears in

these networks?

Problem 2: Analysis of lazy training dynamics

In this problem, we want to show that lazy training dynamics for the scaled objective

Fα(w) := 1/α2 ·R(αh(w)) are close, when α is large, to those of the scaled objective for the

linearized model F̄α(w) := 1/α2 ·R(αh̄(w)), where h̄(w) := h(w0) +Dh(w0)(w − w0).

With an initialization w0 ∈ Rp, the gradient flow of Fα is the path (wα(t))t≥0 in the space of

parameters Rp satisfying wα(0) = 0 and solves the ordinary differential equation (ODE)

w′α(t) = −∇Fα(wα(t)) = − 1

α
Dh(wα(t))>∇R(αh(wα(t))). (3)

Similarly, the gradient flow of F̄α is the path (w̄α(t))t≥0 satisfying w̄α(0) = 0 and solving the

ODE:

w̄′α(t) = −∇F̄α(w̄α(t)) = − 1

α
Dh(w0)

>∇R(αh̄(w̄α(t))). (4)

We assume that h(w0) = 0. We would like to show that given a fixed time horizon T > 0, it

holds that

sup
t∈[0,T ]

‖αh(wα(t))− αh̄(w̄α(t))‖ = O(1/α). (5)
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(5) leads to supt∈[0,T ] ‖wα− w̄α(t)‖ = O(1/α2) which shows that for a large α, the trajectory

of the original model and the linearized model are similar.

1) For T > 0, show that
∫ T
0
‖w′α(t)‖dt ≤

√
T
(∫ T

0
‖∇Fα(wα(t))‖2dt

)1/2
.

2) By using the fact that d
dt
Fα(wα(t)) = −‖∇Fα(wα(t)‖2, show that supt∈[0,T ] ‖wα(t) −

w(0)‖ ≤ (T · (Fα(wα(0))− Fα(wα(T ))))1/2 . 1/α.

This implies that there exists C > 0 such that supt∈[0,T ] ‖αh(wα(t))− αh(wα(0))‖ ≤ C and

supt∈[0,T ] ‖∇R(αh(wα(t)))‖ ≤ C.

3) Let’s define ∆(t) := ‖αh(wα(t)) − αh̄(wα(t))‖. Remark that ∆(0) = 0. Show that there

exist two constants C1, C2 > 0 such that

∆′(t) ≤ C1/α + C2∆(t). (6)

Solve the ordinary differential inequality (6) and deduce that supt∈[0,T ] ∆(t) ≤ C3/α, for

some constant C3 > 0. Conclude that (5) holds.

Hint: Use the ODEs corresponding to the dynamics of αh(wα(t)) and αh̄(w̄α(t)) given by

d

dt
αh(wα(t)) = −Dh(wα(t))Dh(wα(t))>∇R(αh(wα(t)))

d

dt
αh̄(w̄α(t)) = −Dh(w(0))Dh(w(0))>∇R(αh̄(w̄α(t))),

with initial conditions αh(wα(0)) = αh̄(w̄α(0)) = αh(w0) and the fact that d
dt
‖g(t)‖ ≤ ‖g′(t)‖.

N.B: This exercise shows that during the optimization process, if we set α large enough,

the iterates of the model follow those of the linearized model. Chizat and Bach, 2018 prove

stronger results by quantifying the constants we introduced in this exercise and by giving

bounds that are uniform in time. An interesting implication of (??) is that αh(wα(T ))

generalizes like αh̄(wα(T )) outside the training set for large α. In the context of neural

networks, this establishes the connexion between lazy training and the Neural Tangent Kernel

(NTK) (Jacot et al., 2018).

Problem 3: Interpolating between lazy and active training

In the previous exercises, we have established that choosing a large α when training a model

leads to lazy training. Woodworth et al., 2019 show how the scale of initialization controls the

transition between lazy and active training and affects generalization properties in multilayer

homogeneous models. We study this phenomenon in this exercise.
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Consider a training set {x(n), y(n)}Nn=1 and xn ∈ Rd. We want to fit a model that belongs to

the class of linear (linear in x and not in w) functions over Rd with squared parametrization

i.e.

f(w, x) =
d∑
i=1

(w2
+,i − w2

−,i)xi = 〈βw, x〉 where w =

[
w+

w−

]
∈ R2d and βw = w2

+ − w2
−, (7)

where we use the notation z2 for z ∈ Rd to denote the element-wise squaring. We are in the

regression setting where we minimize the squared loss L(w) =
∑N

n=1 ‖f(w, x(n))− y(n)‖2 and

we choose to set N � d which corresponds to the underdetermined case: there are many

solutions to Xβ = y.

We would like to show that the minimizer we reach depend on the scale of initialization

α ∈ R+. We denote wα(t) the dynamics obtained by the gradient flow

ẇα(t) = −∇L(wα(t)), (8)

with the initial condition wα(0) = αw0 for w0 = 12d ∈ R2d. In particular, we focus on the

predictor βα(t) = βwα(t) = w2
α,+(t)− w2

α,−(t).

The goal of this exercise is to characterize βα(∞) i.e. the limit of βα(t) when t→∞ which

is given by

βα(∞) = argmin
β

Qα(β) s.t. Xβ = y, (9)

where Qα(β) =
∑d

i=1 q(βi/α
2) and q(z) =

∫ z
0

arcsin(u/2)du.

Part I: Computing βα(∞)

1) Rewrite the gradient flow equation on wα(t) as

ẇα(t) = −2X̃rα(t) ◦ wα(t), (10)

where X̃ := [X −X], rα(t) := 2(X̃wα(t)2− y) and a ◦ b denotes the elementwise product of

a and b. Solve the ODE (10).

2) Deduce that βα(t) is equal to

βα(t) = α2

(
exp

(
−4X>

∫ t

0

rα(s)ds

)
− exp

(
4X>

∫ t

0

rα(s)ds

))
. (11)

In what follows, we assume that there is some r̄α ∈ Rn, such that r̄α =
∫∞
0
rα(s)ds. This

ensures that βα(∞) exists.
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3) Write the KKT conditions (stationarity and primal feasibility) of the convex program (9).

4) Show that βα(∞) satisfies the stationarity condition. The problem satisfies the strict

saddle property (Ge et al., 2015) therefore gradient flow will converge to a zero-error solution

i.e. Xβα(∞) = y. The primal feasibility being satisfied, this shows that βα(∞) is solution

to (9).

Part II: Interpretation

5) When α→∞, show that Qα(β) ≈ ‖β‖22. Hint: Around z = 0, q(z) = z2

4
+O(z4).

6) When α→ 0, show that Qα(β) ≈ ‖β‖1 + o(1).

7) How do you interepret these results?
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