
MSRI Summer School Precept 2: Mysteries of gradient descent

Instructor: J. Bruna

TA: S. Jelassi

Problem 1: Implicit bias of gradient descent in Logistic Regression

The goal of this exercise is to understand the implicit bias of gradient descent in a simple

setting. Soudry et al., 2018 consider solving an underdetermined logistic regression problem

on a linearly separable dataset by using gradient descent.

More formally, we consider a classification problem where we are given a dataset {xn, yn}Nn=1

with xn ∈ Rd and yn ∈ {−1, 1}. We assume that the dataset is linearly separable i.e.

∃w∗ ∈ Rd such that ∀n : w>∗ xn > 0. The problem is also assumed to be underdetermined i.e.

N < d which implies that there exist several hyperplanes that seperate the data. We aim at

minimizing an empirical loss of the form

min
w∈Rd
L(w) :=

N∑
n=1

exp
(
−yn · w>xn

)
. (1)

Remark that here we use the exp-loss (and not logistic regression) for simplicity. The results

that we prove below also hold for the logistic regression. We also assume for simplicity that

all the labels are positive: yn = 1 for all n ∈ [N ]– this is true without loss of generality, since

we can always redefine ynxn as xn.

Part I: Convergence to the global minimum

1) Write the gradient descent update for the problem (1).

2) Show that there are no finite critical points w̄ ∈ Rd for which ∇L(w̄) = 0.

Hint: Give an expression to w>∗ ∇L(w) for all w ∈ Rd and show that it cannot be equal to

zero.

3) Determine the limit of ∇L(w(t)) when t→∞.
Hint: Use the fact that gradient descent on a smooth loss with an appropriate stepsize is

always guaranteed to converge to a critical point.

4) From 2) and 3), deduce that the iterates of GD w(t) satisfy limt→∞ ‖w(t)‖ =∞.

5) Prove that gradient descent converges to the global minimum i.e. limt→∞ L(w(t))→ 0.

Part II: Implicit bias of Gradient Descent

In part I, we proved that norm of the predictor is not minimized, since it grows to infinity.
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However, for prediction in a classification problem, only the direction of the predictor, the

normalized w(t)/‖w(t)‖ matters. The goal of this part is to understand how w(t)/‖w(t)‖
behaves as t→∞.

In what follows, for the gradient descent iterate w(t), we define r(t) := w(t)− ŵ log(t)− w̃
where ŵ is the L2-max margin error (the solution to the hard margin SVM) i.e.

w∞ = argmin
w∈Rd

‖w‖2 s.t. w>xn ≥ 1. (2)

and w̃ is a vector which satisfies ∑
n∈S

exp(−w̃>xn)xn = ŵ, (3)

where S = argminnŵ
>xn (i.e. the set of vectors xn such that ŵ>xn = 1) are the support

vectors associated to ŵ. For simplicity, we assume that such w̃ exists here. The goal of this

part is to show that ‖r(t)‖ is bounded.

6) Show that r(t) satisfies the ODE:

ṙ(t) = −∇L(w(t))− 1

t
ŵ. (4)

7) Deduce that

1

2

d

dt
‖r(t)‖2 =

∑
n∈S

exp
(
− log(t)ŵ>xn − w̃>xn − x>n r(t)

)
x>n r(t)−

1

t
ŵ>r(t)

+
∑
n6∈S

exp
(
− log(t)ŵ>xn − w̃>xn − x>n r(t)

)
x>n r(t).

(5)

8) By using the fact that S is the set of vectors xn such that ŵ>xn = 1 and the definition

of (3), show that the first term of (5) is equal to

1

t

∑
n∈S

exp(−ŵ>xn)(exp(−x>n r(t))− 1)x>n r(t).

What is the sign of this latter quantity? Hint: ∀z, z(e−z − 1) ≤ 0.

9) Using the fact that ze−z ≤ 1 and defining θ = argminn6∈Sx
>
nw > 1, show that the second

term of (5) is upper bounded by 1
tθ

∑
n6∈S exp(−w̃>xn).

10) By plugging the results from 8) and 9) in (5), prove that there exist C > 0 such that for

all t1 > 0 and for all t > t1, ‖r(t)‖2 − ‖r(t1)‖2 ≤ C ′ <∞.

This proves that ‖r(t)‖ is bounded which implies that ρ(t) = r(t)+w̃ is bounded. Therefore,

we have proved that w(t) = ŵ log(t) + ρ(t) which implies that limt→∞
w(t)
‖w(t)‖ = ŵ

‖ŵ‖ .

2



Problem 2: Gradient Descent Only Converges to Minimizers

The goal of this exercise is to show in simple non-convex examples that gradient descent

avoids saddle points and converge to local minimizers (Lee et al., 2016).

Part I: Non-convex quadratic function

In this part, we consider a non-convex quadratic f(x) = 1
2
x>Hx where H = diag(λ1, . . . , λn)

with λ1, . . . , λp > 0 and λp+1, . . . , λn < 0.

1) Determine the critical points of f. Are they local minima, local maxima or saddle points?

2) Show that the Gradient Descent update on f when initialized in a point x0 ∈ Rn and

using stepsize η > 0 is

xk+1 =
n∑
i=1

(1− ηλi)k+1〈ei, x0〉ei,

where {ei}ni=1 is the canonical basis in Rn.

Gradient descent is guaranteed to converge with constant stepsize when 0 < η < 2
L

where

L = maxi |λi|. We assume here that η < 1/L.

3) For i ∈ [n], compare (1− ηλi) and 1.

4) What is the behavior of xk when gradient descent is initialized in x0 ∈ Es := span(e1, . . . , ep)?

5) What happens if x0 has a component outside Es?

Part II: Non-convex non-quadratic function

Now, we consider the function f(x, y) = 1
2
x2 + 1

4
y4 − 1

2
y2.

6) Determine the gradient mapping i.e. g(x, y) = [x, y]> − η∇f(x, y).

7) Determine the critical points of f. Show that there is one saddle point and determine the

nature of the other critical points.

8) If we choose x0 = [x, 0]> for some x ∈ R, to what critical point does gradient descent

converge?

9) By looking at the Hessian evaluated in the saddle point, make a connection between its

eigenvalues and x0 as defined in question 8).

N.B: In these two examples, we showed that the attractive set of saddle points of a function

is spanned by Es the set of eigenvectors corresponding to positive eigenvalues of the Hessian.

If we choose our initial point at random, it can be showed that the probability of that point

landing in Es is zero. This gives some intuition on why gradient descent avoids saddle points

and converges to minimizers. A proof in the general case can be found in (ibid.).
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Problem 3: Overparametrization in `p regression

The goal of this exercise is to show that for linear regression with `p loss, a slight over-

parametrization can have an effect on the optimization (Arora et al., 2018). Consider the

objective for a scalar linear regression problem with `p loss

L(w) = Ex,y∼S

[
1

p
(x>w − y)p

]
, (6)

where x ∈ Rd are examples, y ∈ R are labels and S is a training set and w ∈ Rd is a

learned parameter vector. We make a simple overparametrization that consists in replacing

the parameter vector w by a vector w1 ∈ Rd times a scalar w2 ∈ R

L(w1, w2) = Ex,y∼S

[
1

p
(x>w1w2 − y)p

]
. (7)

Remark that the overparametrization does not affect the expressiveness of the linear model.

1) Write the gradient descent updates over L(w1, w2) with a stepsize η. For convenience, we

will use the notation ∇w(t), ∇w
(t)
1

and ∇
w

(t)
2

for the gradient of L(w(t)) with respect to w(t),

the gradient of L(w1(t), w2(t)) with respect to w
(t)
1 and the gradient of L(w1(t), w2(t)) with

respect to w
(t)
2 .

2) Using the previous question and assuming that η is small enough, show that

w(t+1) = w(t) − ρ(t)∇w(t) − γ(t)w(t), (8)

where ρ(t) := η(w
(t)
2 )2 ∈ R, γ(t) := η(w

(t)
2 )−1∇

w
(t)
2

.

We assume that w1 and w2 are initialized near zero implying that w is also initialized near

zero.

3) Show that there exist constants µ(t,τ) ∈ R such that

w(t+1) = w(t) − ρ(t)∇w(t) −
t−1∑
τ=1

µ(t,τ)∇w(τ) . (9)

4) Interpret the result obtained in equation (9).

N.B: We have seen in this exercise how overparametrization influences the optimization

update in the case of the `p regression. ibid. also focus on overparametrization in the case of

linear networks and show that depth acts as a preconditioner in the gradient descent update

which may accelerate convergence.
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