
MSRI Summer School Precept 1: Approximation in Deep Learning

Instructor: J. Bruna

TA: S. Jelassi

Problem 1: Universal approximation theorem

The universal approximation theorem informally states that a feed-forward network with a

single hidden layer containing an infinite number of neurons can approximate continuous

functions on compact subsets of Rn, under mild assumptions on the activation function. In

this exercise, we propose to prove the original statement by Cybenko, 1989.

Let In be the n-dimensional unit hypercube [0, 1]n and C(In) the space of real-valued con-

tinuous functions on In. We consider S the set of 1-hidden layer networks which correspond

to the functions F for which there exist N > 0 such that

F (x) =
N∑
i=1

αiσ(w>i x+ bi), (1)

where w ∈ Rn and αi, bi ∈ R are the parameters of the network. It is easy to see that S

is a linear subspace of C(In). We assume that the activation function σ is continuous and

discriminatory i.e. if for a signed measure µ ∈M(In)∫
In

σ(w>x+ b)dµ(x) = 0, (2)

for all w ∈ Rn and b ∈ R, then µ = 0. The universal approximation theorem states that

given any function f ∈ C(In), for all ε > 0, there exist Nε > 0 and F ∈ S such that

|F (x)− f(x)| < ε, ∀x ∈ In. (3)

Part I: Proof of the theorem

We assume by contradiction that S̄ 6= C(In), where S̄ is the closure of S. In other words, S̄

is a closed, proper subspace of C(In).

I.1 Application of the Hahn-Banach theorem

1.1) Explain why S̄
⊕

Rϕ where ϕ ∈ C(In)\S̄ is a direct sum.

1.2) We define the mapping Φ such that

Φ: S̄
⊕

Rϕ→ R

f = g + αϕ 7→ α,
(4)
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and pΦ as

pΦ : C(In)→ R

h 7→ ‖Φ‖ · ‖h‖∞.
(5)

where ‖Φ‖ = sup‖f‖∞≤1 |Φ(f)| and ‖h‖∞ = supx∈In |h(x)|. Show that by applying Hahn-

Banach theorem with these choices of functionals, there exists a bounded linear functional

F such that F |S̄ = 0 and F 6= 0.

I.2 Application of the Riesz representation theorem

3) By using the Riesz Representation theorem on F and the discriminatory property (2),

prove that there is a contradiction with S̄ 6= C(In).

I.3 Conclusion

4) In I.2, we proved that S̄ = C(In). Deduce that (3) holds.

Part II: Discussion

5) Assume that σ is the complex exponential function i.e. σ(x) = eix. Is it a discriminatory

function? What is the analog of the universal approximation theorem in this case?

6) Give an example of a discriminatory and a non-discriminatory activation function σ.

Hint: For simplicity, you can assume that the parameters are one-dimensional i.e. w, b ∈ R.

i. Show that the ReLU function is discriminatory by constructing a sigmoid function from

the ReLU function and using the fact that sigmoid functions are discriminatory.

ii. Show that a polynomial of degree m is non-discriminatory.

N.B: In this exercise, we showed that a neural network with infinite number of neurons can

approximate any continuous function. It is important to notice that the convergence rate

for this approximation is very slow since it is exponential in the dimension.

Problem 2: The Power of Depth in feedfoward neural networks

The XOR function (”exclusive or”) is an operation on two binary values x and y. When

exactly one of these binary values is equal to 1, the XOR function returns 1. Otherwise, it

returns 0. In this exercise, we assume that the XOR function provides the target function

y = f ∗(x) and we want to learn this target by using a 0-hidden layer and a 1-hidden layer

neural network.

1) Write all the possible inputs and outputs of the XOR function.

2) Show that the XOR function cannot be approximated by a 0-hidden layer neural network.

3) Construct a 1- hidden layer neural network that approximates the XOR function.

Hint: Write the XOR function as a composition of simpler binary functions. It is then
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possible to express these binary functions using neurons with well-chosen parameters and

activation functions.

4) Does this contradict the previous universal approximation result? Justify your answer.

N.B: This exercise underlines the importance of depth in neural networks for approximation.

Eldan and Shamir, 2016 and Safran and Shamir, 2017 provide examples of functions that

can be approximated with a 2-hidden layers neural network having polynomial width but

cannot be approximated by a 1-hidden layer neural networks with exponential width.

Problem 3: Learning with an infinite number of neurons

Analyzing the problem of learning a target function with a 1-hidden layer is in general

challenging due to the non-convexity of the problem. Bach, 2017 proposed a method to

”convexify” the problem by considering 1-hidden layer neural network having an infinite

number of neurons. This can be done by restricting the search space to two possible func-

tional spaces. The goal of this exercise is to understand in a simplified setting the difference

between these two spaces. The functional space G1 is defined as

G1 :=

{
g : Sd → R

∣∣∣∣ g(z) =

∫
Sd

σ(v>z) µ(dv) with ‖µ‖TV <∞
}

(6)

where Sd ⊂ Rd+1 is the unit sphere of the Euclidean norm, σ(u) = max{0, u} is the ReLU

function, µ is a signed Radon measure on Sd from which the neurons v are sampled. ‖µ‖TV

is the total variation of µ, defined as

‖µ‖TV := sup
|u(v)|≤1

∫
Sd

u(v)µ(dv) .

On the other hand, he defines the functional space G2

G2 :=

{
g : Sd → R

∣∣∣∣ ∃p : Sd → R, g(z) =

∫
Sd

p(v)σ(v>z) dτ(v)

}
, (7)

where p is here a dτ -squared-integrable density function p ∈ L2(Sd, dτ). Remark that G1 and

G2 just differ by the existence of a density function. G2 is defined relative to a base measure

τ whereas G1 is ‘intrinsic’.
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He also associate two norms γ1 and γ2 respectively to G1 and G2 that are defined as

γ1(g) = inf
g(z)=

∫
Sd σ(v>z)µ(dv)

‖µ‖TV, (8)

γ2
2(g) = inf

p∈L2(Sd)

g(z)=
∫

Sd σ(v>z)p(v)dτ(v)

∫
Sd

|p(v)|2dτ(v). (9)

Part I: Differences between G1 and G2

1) Show that G2 ⊂ G1. Hint: Consider a function f ∈ G2 and show that γ1(f) ≤ γ2(f).

2) Give an example of function that belongs to G1 but not to G2.

Hint: Consider the function gε(z) =
∫
In
σ(v>z)pε(v)dτ(v) =

∫
In
ε−dσ(v>z)p(ε−1v)dτ(v)

where p is a density with bounded L2-norm. Show that γ1(gε) < ∞ and γ2(gε) = ε−d/2γ2(g)

where g(z) =
∫
In
σ(v>z)p(v)dτ(v). When ε→ 0, this implies that γ2(gε)→∞ meaning that

gε 6∈ G2.

Part II: G2 is a RKHS with norm γ2.

II.1 G2 is a RKHS.

We want to show that G2 is a RKHS with kernel k(x, y) =
∫

Sd σ(v>x)σ(v>y)dτ(v). We con-

sider a linear mapping T : L2(dτ)→ G2 defined by (Tp)(x) =
∫

Sd p(v)σ(v>x)dτ(v) with null

space K.
3) Explain why we can define a bijection U from K⊥ to G2.

In what follows, we define a dot-product on G2 as 〈f, g〉 =
∫

Sd(U−1f)(v)(U−1g)(v)dτ(v).

4) To what functional space does k(·, y) belong for all y ∈ Sd?

5) For any y ∈ Sd, we set p = U−1k(·, y) ∈ K⊥. Let q defined as q : v 7→ σ(v>y) ∈ L2(dτ).

To what functional space does p− q belong? Justify your answer.

6) Show that for f ∈ G2, 〈f, k(·, y)〉 = f(y). This is called the reproducing property and

allows to show that G2 is a RKHS.

II.2 γ2 is the norm associated to the RKHS.

Now, we want to show that the RKHS norm of G2 is γ2. For any f ∈ G2 such that f = Tp

for p ∈ L2(dτ) we have p = U−1f + q where q ∈ K.

7) Show that
∫

Sd p(v)2dτ(v) = ‖f‖2 + ‖q‖2
L2(dτ), where ‖ · ‖ is the norm induced by the

dot-product defined on G2. Deduce that γ2(f) = ‖f‖.

N.B: Learning a target function over the functional space G1 (resp. G2) amounts to fit a

1-hidden layer network with infinite width but with a L1-penalty (resp. L2-penalty) on the

number of neurons. As we have seen on some examples, G2 is smaller than G1. However,

algorithms for G2 are significantly more efficient since this functional space is a RKHS.

One can then use the usual RKHS representer theorem or the random features technique
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(Rahimi and Recht, 2008) to approximate the target function. Algorithms for F1 are of

the type conditional gradient (a.k.a. Frank-Wolfe) and may be exponential in time. An

interesting trade-off between approximation and optimization appears here.

Functional analysis tools

Sublinear function: Given a real vector space X, a function p : X → R is called sublinear if

1. Positive homogeneity: p(λx) = λp(x) for all λ ≥ 0 and x ∈ X.

2. Subadditivity: p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

Hahn-Banach theorem: Let X be a real vector space, p : X → R a sublinear functional, M

a subspace of X, and Φ: M → R a linear functional such that Φ(x) ≤ p(x) for all x ∈M .

Then there exists a linear functional F : X → R such that F (x) ≤ p(x) for all x ∈ X and

F |M = Φ.

Riesz representation theorem: If I is a linear functional on C(X) with compact support,

there is a unique signed measure µ on X such that I(f) =
∫
fdµ for all f ∈ C(X) with

compact support.

Sigmoid function: A function σ : R → R is called a sigmoid if it satisfies the two following

properties: limt→∞ σ(t) = 1 and limt→−∞ σ(t) = 0.

Sigmoid functions are discriminatory : Any bounded measurable sigmoid function is discrim-

inatory.

Reproducing Kernel Hilbert Space (RKHS): Let X be an arbitrary set and (H,〈·, ·〉) a Hilbert

space of real-valued functions on X. H is a RKHS if for all x ∈ X, there exist a unique

Kx ∈ H such that f(x) = 〈f,Kx〉 for all f ∈ H.
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